
/"1- J .'i.d"J.t St'UOU'f·. VIII ~. '0 ~..4. rplll~:- "N", 1'I\j:
Pnntcd In Great Bnt.un

iKI:(}. 76111 Q: ssoo•.oo
" 1'1'1: P.,.pmun Pras Ltd

A HYBRID ENERGY APPROACH FOR
VIBRATIONAL MODELLING OF LAMINATED

TRAPEZOIDAL PLATES WITH POINT SUPPORTS

K. I'v1. L,EW
Divisi"n of Applied Mechanics, Sch"'ll "I' Mechanical and Production Engineering.

Nanyang Technological University. Nanyang Avenue. Singapore 2263

(R"C!'in'd 6 F,,"rrw,.I' 199~; ill '<Tis"d /""" ~ JIIII" 19n)

Abstract-An investigatilm on the free lle~ural vibration "f symmetric angle-ply thin trapezoidal
plates continuous over arbitrarily distributed point supports is reported. A hybrid energy approach
which combines the ph-;: Rayleigh ··Ritz mcth"d with the Lagrangian multiplier method is proposed
for the modelling "I' the ;lttlrementi'lned plate prol'>lem. The ph-:: Rayleigh-Ritz method uses a set
of Ritz functions gener,Hed fr"m the product of a two-dimensional polynomial and the equations
of boundaries each raised to the pllwer of 0, I or 2 corresponding to a free. simply-supported or
clamped edge, respectively. The gel'metric I'>oumlary cllnditillns associated with the point supports
arc Siltislil:d through Ihe usc (.1' Lagrangian multipliers. In Ihis paper. some new solutions for the
n;ltural frequencies of sneral laminated Ir;lJle7llill;11 plates with ditferent st;lcking sequenees and
lo<:ation of point supports arc prcscnh:d. The lirst kll\lwn mode shapes by mcans of contour plots
li.r such taminah:d plates arc alsl' induded.
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lengths of two parallel sides (,I' trapezoidal plate (Sl'\: Fig. I)
height of trapezoidal plate
cndlicients
hending still'ness coelliciellts
i~',1t '/12( I .. ",)",,)
Young's moduli p;lr;dlel 10 and perpendicular to lihres
plate Ihickness
hcnding curvatures
moment resultants
degn..'\: set of polynomial space
pl;ltc domain
milltimum kinetic energy
maximulll strain energy
displacement funclion
Carlesian coordinates
tibre orienlation angle
hasic fUIll:tion
l'/h

'fre4ucllI:y parametcr (1'"",1'1·: IJ" I
densily per unit area llf pktte
Puissun's ra tillS
nOlI ural radian freqllency
x/u,

I. INTRODUCTION

Only limited research work has been reported in the open literature concerning the free
flexur,11 vibrations of thin symmetrically laminated trapezoidal plates. However the practical
applications of such laminates in aircraft and ,Ierospace industries arc very important
because lighter and stiffer structures may be built as the composite materials arc utilized.

For static ,lOd dyll4lmic ,104tlyscs, the 4llHllytic4t1 or CX4Ict solutions to the symmetric
angle-ply thin plates arc ditlicult (and perhaps impossible) due to the presence of odd
derivatives in the governing dilferential equation of motion. In the open literature, only a
few exact vibration solutions for lamin,lted cross-ply simply-supported rectangular plates
arc available (Whitney and Leissa, 1969; Lin and King, 1974; Baharlou and Leissa, 1987).

A recent publication by Lcissa and Narita ( 1989) has presented a set ofcomprehensive
approximate Ritz-vibration solutions for symmetrically laminated thin simply-supported
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rectangular plates. Following that Chow t'{ £II. (1992) ha\(: proposed a set of two-dimen
sional orthogonal polynomial functions (Liew. 1990; Liew and Lam. 1991) which is used
as the admissible displacement fum:tion in the Rayleigh -Ritz method to study the vibration
of the symmetric angle-ply rectangular plates with any possible combination of classical
edge support conditions. Some numerical results for the natural frequencies and mode
shapes of such plates were presented.

For vibration of symmetric angk-ply thin plates of other shapes. only a few papers
can be found in the open literature. Nair and Durvasula (1974) have presented a formulation
based on the orthotropic plate theory with arbitrary orientation of principal axes of ortho
tropy. Natural frequencies for several single-layer composite skew plates were presented.
Some numerical results for a fully clamped single-layer skew plate subjt.'Cted to in-plane forces
have been published by Srinivasan and Ramachandran (1975). Recently Liew (1992) has
presented a study on the free vibration of symmetric angle-ply trapezoidal plates using a
set of two-dimensional orthogon4l1 polynomi4lls in the Rayleigh-Ritz method. Natural
frequencies and mode shapes for several cantilever trapezoidal plates were obtained. The
method was further extended to study the s4Ime problem but with internal dastic point
constraints by modifying the general energy functional with an additional term which
associated with the elastic springs (Liew and Lam. 1992). An investigation into the effects
of elastic spring constants on the natural frequencies and mode shapes of symmetrically
laminated trapezoidal plates was carried out.

This paper extends the earlier work by the author (Liew. 1992) to study the free
vibration 'lllalysis of symmetric angle-ply trapezoidal plates with point supports arbi
trarily distributed inside the plate domain or along the edges. The present study deals with
plates on simple point supports (dellectioll. I\" :::: 0) which is dilrercllt from the work by
Liew and Lam (11)1)2) who cnllsidered the plates supported by clastic points. Of cnurse. by
considering the clastic stifrness to be large. it leads to the same solutions as the present
approach. One should notc that as the clastic points increase, unstahlc solutions may be
encountered due to the large stilrness resulting from the large spring constants assumed.
This setback will not be encountered in the hybrid energy approach.

The present analysis is performed using a hybrid I'h-1 Ibyleigh Ritz Lagrangian
multiplier approach. In the Rayleigh Ritz method. the admissible displacement function
(Liew and Wang. 19l)2) employed is a set of I'h-1 Ritz functions which consists of the
product of a two-dimensional polynomial (1'-1) and a basic function (h). The basic function
is the product of the equations of the piecewise continuous houndary shape each raised to
the power of O. I or 2. corresponding to a free. simply-supported or damped edge. respec
tively. The set of functions generated autornatil:ally satisfies the geometric boundary con
ditions of the plate at the outset. For the geometric boundary conditions of zero dellections
(II' :::: 0) associated with the point supports arc satislied hy introducing the Lagrangian
multipliers.

Several tnlpezoidal plates with difrcrent numbers of layers. stacking sequences ,Illd
point locations are studied. The examples considered by Liew and Lam (1992) arc also
solved to serve as the purpose of comparison. Several new problems are introJuced. The
first few natural frequency parameters and mode shapes for these new trapezoidal plates
arc reported herein.

1, PROBLEM DEFINITION

Consider a thin, fibre-reinforced composite. laminated angle-ply, points supported
trapezoidal plate lying in the xy-plane. and bounded by -a/2 ~ x ~ al2 and -h12 ~

Y ~ h12, .IS shown in Fig. I. The plate. with thickness II in the =-Jirection, consists of n
layers of orthotropie plies perfectly bonded together by a matrix material. The reference
plane = = 0 is cOllsidered to be located at the ulldeformed middle pl<llle as ShOW'1l in Fig. 2.
The tibre direction within a layer is indicated hy the angle fl. The modulus of elasticity for
the layer pamllel to the fibres is denoted by £1 and perpendiculur to the fibres by Ez.

In the present analysis, only plates with stacking layers symmetric about the mid-plane
are considered. By this special symmetrical arrangement. the coupling between the transverse
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Fig. I. Geometry of a trapezoidal plate with fibre direction fl, continuous over point supports.

bending and in-plane stretching is avoided. The problem is to determine the natural fre
quencies and mode shapes for the symmetric angle-ply trapezoidal plate with arbitrarily
distributed point supports.

3. METHOD OF SOLUTION

An attempt to solve the problems is m.tde by using the Rayleigh ···Ritz approach with
a set of ph-2 Ritz functions (referred to as the ph-2 Rayleigh-Ritz method) together with
the Lagrangian multiplier method.

The strain energy for the plate due to bending can be expressed as

v = ~ fL[MJ(K]dx dy.

where the integration is carried out over the entire plate domain Rand

[M] = [M"M.... M,,]T.

[K] = [K,. K... K".].

in which [MJ is the moment resultant and [K] is the bending curvature.
The bending curvatun:s arc related to the displacements by

( I )

(2)

(3)

T
hI2

+hJ2
.i.

Fig. 2. Layer coordinates and orientation for laminates.
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For anisotropic materials, the moment resultants are given by

[M] = [D][K],

(4)

(5)

(6)

(7)

where [D] is a 3 x 3 symmetric matrix of bending stiffness coefficients.
For symmetric angle-ply laminates, the coefficients of the bending stiffness matrix are

given by

I "'
D" = i L (N,,)dhl-hl_I); c,l = 1,2,6,

- k 1

(8)

where (N" h is the reduced stiffness of the k th ply which is ddined by the clastic constants
of the layer and fibre orientation angle rh. The reduced stiffness for the kth ply (N"h can
be expressed as

where

E I,Q - ~----_.- ----
11.\ - I-v" \"1 '

-4 .. I,

E,
Q.,,, = :~--._.-

--4, 1- \'I:!. V11", '

( 15)

(16)

( 17)

( 18)

( 19)

in which Elk and £~k are the Young's moduli parallel to and perpendicular to the fibres and
v12k and ~'2Ik are the corresponding Poisson's ratios.
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Substituting eqns (2)-(8) into eqn (I). the strain energy becomes
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(20)

The maximum kinetic energy of the plate during small amplitude vibration is given by

(21 )

where p is the mass per unit area of plate. II is the thickness and (t) is the angular frequency
of vibration.

The total energy functional for the plate can now be written as

F= V-To

The displacement function ~V(~.'O may be expressed as

p "

~V(~.'O = L L C,(I),(~. '1).
" .... u (- n

(22)

(23)

where ~ = x/'" '1 = .1'//1. p is the degree set of polynomial space. C, are the unknown
coellieients and

(q+ I )(q+2) .
r= ._.... .,-'-'-1.

The basic function (I> I (~.'I> is defined as

~

(I>, (~.'I> = n[r,(~, '1)]0,
,- ,

(24)

(25)

(26)

in which r, is the boundary equation of the itll supporting edge. and 0, takes on O. I or 2
corresponding to a free. simply-supported or clamped edge. respectively.

For the cantilever trapezoidal plate considered here. the basic function is simply given
by

(27)

If the plate has N point supports either along its edges or internally. the deflection
surface has to be constrained as

Wi = 0; i = I. 2. 3..... N. (28)

where Wi is the deflection at the ith point support. The constraints may be satisfied by
augmenting the functional. F. of eqn (22) to
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F* = V - T + L 1\, W,(';,. 'I,).
1= I

(29)

where 1\, are the Lagrangian multipliers and (~,. 'I,) are the position coordinates of the point
supports.

The minimization of the augmented functional. F*. with respect to C and 1\, leads to
the governing eigenvalue equation

(30)

where [C:' = [C. Cz..... C]T. [I\}
are

:1\ I. 1\> .... Ad T. and the elements in the matrices

(32)

and

I.." = llli(~'" 'I.,). q = 1.2..... N.

If [DI'"III(: ")J[CY'''111 (: ")JR Ill,·... ' <,. , ..,. d: I" = ",';1, II --_. ,:,-~" .., 01.
R <.., UI c.., UI

(33)

(34)

(35)

in which i.) = 1.2....• 111 and 111 is the number of polynomial terms in a I' th degree set which
is equal to (I' + 1)(1' + 2)/2.

For vibration analysis. the eigenvalues arc obtained by solving the set of homogeneous
equations (30). Rack-substitution yields the coeflicient vectors; substitution of these
coeflicient vectors into eqn (23) gives the mode shapes of the plate.

4. NUMERICAL EXAMPLES AND DISCUSSION

Several examples have been selected to demonstrate the applicability and accuracy of
the proposed method. In this paper. symmetric ungle-ply trupezoidul plutes with dilTerent
stucking sequences. ungle of fibre orientations. number of luyers und locution of point
supports arc considered. The eigenvalues obtuined for the exumples ure expressed in terms
of the non-dimensional frequency purameter (p//(J)Z(J4/ Do) u. In order to compure the
results published by Liew and Lum (1992). the sume gruphite/epoxy (G/E) composite is
chosen. The detailed muteriul properties of graphite/epoxy (G/E) composite ure given in
Tublc I.

Table I. Material properties of graphite!epmy (G! £) composite

Maleri.1I
G!£

£, (GPa)
I3R

E= (GP.I) G,= (GPa)
8.96 7.1
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Fig. 3. Boundary conditi,,"s for the point supp,'rh:d Ira pelOidal plates under investigalion.

4.1. CClltra/ly-/(/catcel pO;lIt slIpports

The first set of problems considered is a cantilever. laminated trapezoidal plate
(a/h = I) with the edge clamped at y = - 1;2 which is continuous over a centrally-located
point support (x = o. y = 0) as shown in Fig. .3('1).

Initially. the method is applied to solve thc samc prohlems as prescnted previously hy
Liew and Lam (191)2) whidl are the eight-ply laminated plate with stacking sequcnce of
[(0.90 .90·.O)!')lI1and 16-plywithstackingscqucnccof[(O.45. -45 .9()')~]')1I1' By using
the degn:e set of I' = 10 in the dellection function. the results arc ohtained and tahulatcd
in Tahle 2 together with the solutions of I.iew and LIm (11)1)2). It can bc seen that the
present results and those values of Liew and Lam are in dose agreement.

Two new examples arc induded in this section. The convergence patterns of the
frequency parameters for (a) an eight-ply [22.5. -22.5.67.5 . -67.5].YIl1' and (h) a 16
ply [(.30. -.30 '. 60 . -60):1.'111 lamin'lted trapezoidal plates (a/" = I. c/a = 2/5) .Ire given
in Table J. It can he seen that. for both cases. convergent results arc obtained when p = 10.
The displacement contour plots of the tirst six mode shapes for the eight-ply and 16
ply laminated trapezoidal plates with c/tl = 2/5 and 4/5 arc presented in Figs 4 and 5,
respectively.

4.2. PO;lIt .I'1I1'1'0rt.l' locatcc! Oil the CIZt}C
The second set of problems considcred is also a cantilever. laminated trapezoidal plate

(a/" = I) with the edge damped at y = - 1/2 [sec Fig. 3(b)1 but now with two point
supports located (a) for c/a = 2,5 at x = - 1/5. Y = 1/2 and at x = 1/5. y = 1/2. and (b)
for c/a = 4/5 at .\' = - 2/5. y = 1,2 and x = 2/5. y = 1/2. respectively.

Tahle 2. Comparison of frequen.:y parameters (/,1Itr}11/·;/)"I' 1 for symmetric angle-ply
Ira pelOidal plates with a centrally-located poinl support (1/11> = II

C/ll

Mode sequence numher
2 3 ~ 5 6

(;1) 1(0,90.90.0 )!"m

2:5
Liew ;lnd Llln XA9 1<.67 26.5X 27.S1 ~X.79 56.33
Presenl X.~9 lUll 26.61 27.XI ~ILXJ 56.36

~/5
Liewand L,m 5.IX 6.69 19.7') :!().9~ 30.()~ 4X.l<X
Present 5.1l< fl.fo9 19.XO 20.% .10.11 4X.96

th) ((0.45. -~5 .9() 1:1.""

2,'5
Licw and Lam X.67 11.2s 30.61 JI.X6 ~5.7~ 61.30
Pres.:nt s.67 11.2X JOM .1 I ()() ~5.XI 61.~s

45
Lie\\' and Lam 6. 1)() 7.49 21.2S 2.1.92 ~2.95 45.21
Present fl.90 7.51 2I.JJ 2~.()1 -12.97 45.32
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Tabk 3. Convergence patterns of frel.juency parameters I ph..,'u' D"I
for symmetric angk-ply trapezoidal plates with a centrally-located POint

support (u " = I. c u = ~ 5)

Degree ~h\de S<:l.juem;e number
p ~ 3 .I 5 6

(a) [/:!:!.5 . -~:!.5 .67.5. -67.5 )L..
7 9.10 11.76 30..13 3~.91 -l9.~7 61.76
8 9.05 11.75 ~9.68 3~.50 .19.15 61.31
9 9.04 11.75 ~96:! 3~.-l8 .19.07 61.1.1

10 9.03 11.75 ~<)60 3~.-l8 49.06 61.l:!

(b) [00. -30.60. -60 ),1","
7 7.87 1:!.13 3US 33.15 -l1.~6 61.~8

8 H4 I:!. 13 31.18 3~.81 41.~-l 61.19
<) H3 1:!.12 31.08 3:!.78 41.1 \) 61.17

10 H3 1:!.12 31.07 3~.78 41.1 \) 61.16

~=9.03 ~=11.75 ~=29.60 ~=32.48 ~=49.06 ~=61.12

(a) cIa =2/5

~=6.76 -n.;= 8.40 ~= 20.88 ~=24.67 .J\= 41.11 ~= 45.86

(b) cia =4/5

Fig. 4. Contour plots for the mude shapes of the eight-ply (j/ I,' centrally point supported
(x = o. y = 0) laminated trapelOidal plate (u" = I) with stacking sequence of [~:!.5 . - 22.5 •

67.5. -07.5 I.,,,,.

~=7.83 ~=12.12 ~=31.07 ~=32.78 .J\=41.19 ~=61.16

(a) cia =2/5

~=6.68 ~=7.70 -n::; =21.96 ~=24.41

(b) cia =4/5
.J\=41.37 ~ =48.02

Fig. 5. Contour plots for the mode shapes of the 16-ply G. E centrally point supported (x = n. y = 0)
laminated tr:lpczoidal plale (<II" = I) with stacking sequence of [30 . - 30 .60 . - (0),1",".
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Table 4. Comparison of frequency parameters (phw:a', D,,/ I: for symmetric ang1l:-ply
trapezoidal plates with two point supports located at x = - 1/5. y = 1, 2 and at x = L5.

y == II:! (alb == I)

3095

cia

2/5

4/5

2/5

4/5

Mode sequence number
Source 2 3 4 5 6

(a) [(0.90'.90.0/)....
Liew and Lam 12.19 15.78 33.27 40.16 42.56 5300
Present 12.20 15.83 33.28 40.18 42.64 53.11
Liew and Lam 8.84 13.69 18.59 27.15 35.92 44.27
Present 8.84 13.70 18.63 27.23 36.01 +uo

(b) [(0'.45". -45°.90'>:1....
Liewand Lam 11.73 18.37 33.05 45.43 45.85 56.36
Present 11.73 18.40 33.07 45.43 45.91 56.41
Liew and Lam 9.48 15.48 18.01 36.29 38.17 47.68
Present 9.48 15.48 18.04 36.37 38.23 47.12

Similarly, two known examples (Liew and Lam, 1992) are solved to verify the accuracy
of the present approach. There are the laminated plates with the stacking of: (a) [(0 '.90',
90", O')].ym and (b) [(0',450, -45', 90"h),ym' The results obtained using p = 10 and the
published values are given in Table 4. It is evident that the comparison is shown in good
agreement.

Again, two new examples are considered here. Table 5 shows the convergenl:e of the
frequency parameters for (a) an eight-ply [22S, -22.5',67.5', -67.5'),ym, and (h) a 16
ply [(30', -30".60'. -60'h),ym laminated trapezoidal plates (lIlh = I. cia = 215). Similarly
convergent solutions for the first six modes can be obtained when p = 10. The mode shapes
for the two laminated trapezoidal plutes with cia = 2/5 and 4/5 arc presented in Figs 6 and
7 together with the relevunt frequency parameters given below e.tch mode shapc.

5. CONCLUSIONS

The paper presents some new vibration solutions for symmetric unglc-ply trapezoidal
plates continuous over point supports of arbitrary distribution. A hybrid ph-2 Ruyleigh
Ritz-Lagrangian multiplier method was proposed to solve the aforementioned plate prob
lems. The method has been shown to give accurate frequency parameters and mode shapes
for these plates through the comparisons and convergence tests.

From the present study. it is concluded that different numbers of layers and com
binations of fibre orientations may affect the vibratory response for the plate problems
considered.

It should be remarked that the proposed method is capable of analysing symmetric
angle-ply plates or arbitrary shape and any combinations of boundary conditions. It can

Table 5. Convergence pallerns of frequency parameters (I,IIII)=,,'/D,,) I: for
symmetric angle·ply trapezoidal pl:llcs with two point supports located at

x= -1/5.}'= 1/2andatx= 1/5.y= 1/2 (IJ/b = 1,1'/,,=2/5)

Degree
p

7
K
9

10

Mode sequence number
234 5

(a) [(22.5', - 22.5'.67.5 '. -67.5»).,..
t2.67 Ill.68 32.52 45.ll3 47.21
12.67 18.67 32.25 45.43 46.22
12.66 18.67 32.23 45.35 46.20
12.66 18.67 32.22 45.35 46. III

6

60.83
57.88
57.57
57.55

$AS 29:24-C

7
8
9

10

10.52
10.51
10.51
10.50

(b) [(30'. -30,60', -60>:).,..
19.00 31.66 45.06
19.00 31.60 44.42
19.00 31.56 44.38
19.00 31.56 44.3K

45.81
45.51
45.49
45.49

62.04
59.69
59.35
59.35
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~=12.66 ~=18.67 ~=32.22 ~=45.35 ~=46.18 ~=57.55

(a) cIa =2/5

~=9.45 ~= 15.91 ~=18.52 ~=32.40

(b) cIa =4/5

~=40.24 .f\=48.24

Fig. 6. Contour plots for the mode shapes of eight-ply G/ E laminated trapezoidal plate (alh = I)
having two point supports located at: (a) x = -1/5. y = II:! and x = 1, 5. y = 1/2 (cIa = 2/5). and
(h) x = - 2!5. y = II:! and x = :!/5. y = 112 (c!a = 4,5) with stacking sequence of [2:!.5. - 22.5".

67.5 . -67.5l.m-

~=10.50 ~=18.99 ~=31.56 ~ =44.37 ~ =45.49 ~ =59.35

(a) cIa =2/5

~=9.32 ~=15.72 ~= 17.57 ~=36.11

(b) cia =4/5

~=36.62 ~=48.70

Fig. 7. Contour plots for the modc shapcs of 16-ply G/E laminatcd trapcloidal platc (alh = I)
having two point supports locatcd at: (a) x = -1/5. y = I/:! and x = 1/5. y = 1/2 (cIa = 2/5).
and (b) x = - 2/5. y = 1/2 and x = 2/5. .\' = 1/2 (c/a = 4/5) with stacking sequencc of [(30', - 30',

60 . - 60 ),J.,....

also be employed to perform the bending and buckling analyses of symmetric angle-ply
plates with the appropriate energy functionals.
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